
Abstract. n–electron valence state perturbation theory
(NEVPT) is a form of multireference perturbation the-
ory where all the zero-order wave functions are of
multireference nature, being generated as eigenfunctions
of a two–electron model Hamiltonian. The absence of
intruder states makes NEVPT an interesting choice for
the calculation of electronically excited states. Test cal-
culations have been performed on several valence and
Rydberg transitions for the formaldehyde and acetone
molecules; the results are in good accordance with the
best calculations and with the existing experimental
data.
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1 Introduction

Most molecules in their ground state near the equilibrium
geometry have a closed-shell nature and can be success-
fully described by a single Slater determinant at the
Hartree–Fock level of theory. A good portion of the
correlation energy can then be effectively gained at a low
computational cost by applying Møller–Plesset pertur-
bation theory [1], usually at the second order level (MP2).
In a great deal of chemically interesting circumstances,
though, the description based on a single-reference
determinant becomes defective, as, for instance, in
molecular geometries far from equilibrium during the
course of a chemical reaction or in excited electronic
states. In such cases it is essential to provide a zero-order
description where all the determinants (configurations)

that play an important rôle in the electronic wave
function are explicitly taken into account. Multireference
perturbation theory (MRPT), where the zero-order wave
function is variationally built upon a configuration
interaction (CI) involving the most important determi-
nants is a natural extension of the single–determinant
Møller–Plesset perturbation theory. We shall not review
here the more than 30-year-old history of MRPT,
confining ourselves to recalling that the most successful
treatments are based on a zero-order reference of
complete-active-space self–consistent-field (CAS–SCF)
type [2,3], where the first–order perturbation correction
to the wave function is built in terms of contracted
excitations applied to the zero-order wave function [4].
The CASPT2 technique of Roos and collaborators
stands out as a particularly efficient method for the
treatment of correlation energy in a multireference–based
description of molecular systems. Recently a variant of
CAS–based MRPT, called n–electron valence state
perturbation theory (NEVPT), has been proposed
[5,6,7], where particular care has been addressed to
complying with some important formal requirements,
among which we quote (1) strict separability (size
consistence), ensuring that the energy of a system made
of noninteracting parts be equal to the sum of the
energies of the isolated parts calculated with the same
method and (2) absence of ‘‘intruder states’’, requiring
that the energies of the zero-order wave functions
belonging to the outer space be well separated from the
energy of the reference state, thus averting divergences in
the perturbation summation. The latter requirement
assumes particular relevance in the treatment of elec-
tronically excited states, where the appearance of intrud-
ers can most easily manifest itself.

This paper is addressed to the description of elec-
tronically excited states with the NEVPT at the second
order level (NEVPT2) technique in a couple of test
molecules, formaldehyde and acetone. The principal aim
of this work is not to solve the still open questions of the
interpretation of the electronic spectra of the molecules
studied but, rather, to verify the ability of NEVPT2 to
provide a viable means of calculation of excited states.
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The rest of the paper is organized as follows: a brief
summary of the NEVPT2 method is provided in Sect. 2;
Sect. 3 is dedicated to the description of various elec-
tronic transitions in the formaldehyde and acetone mol-
ecules; Sect. 4 contains concluding remarks.

2 Summary of the NEVPT2 method

NEVPT2 has been formulated in different variants, according to
the type of zero-order Hamiltonian adopted and to the degree of
contraction employed in the definition of the zero-order wave
functions, referred to as the ‘‘perturbers’’ in the following. In all the
NEVPT variants the perturbers exhibit multireference nature and
are obtained as eigenfunctions of a two–electron model Hamilto-
nian. The state of interest Wm is approximated at zero-order by a
CAS–CI wave function Wð0Þm (usually CAS–SCF) obtained by di-
agonalizing the Hamiltonian matrix built on a given CAS space.
The spatial orbitals utilized are subdivided into the three usual CAS
classes: core, with occupation numbers always equal to 2, active,
with all possible occupations (0,1,2), and virtual, with occupation
always zero in all the determinants of the CAS. The zero-order
wave functions other than the variational Wð0Þm (the perturbers) also
belong to CAS–CI spaces characterized by well-defined occupation
patterns of the inactive (core and virtual) orbitals. A generic per-
turber is designated as WðkÞl;l and the CAS–CI space to which it

belongs as SðkÞl , where k is the number of electrons promoted to (if
positive) or removed from (if negative) the active space
(�2 � k � 2), l denotes the fixed occupation pattern of the inactive
orbitals and l enumerates the various perturbers in SðkÞl . The
number of types of CAS–CI spaces which play a rôle in second–
order perturbation theory is restricted to eight: there are two pos-
sible types with k ¼ 0 according to whether two or one core elec-
tron is transferred to the virtual orbital space; for k ¼ þ1 (�1) two
types are also possible, the first implying a transfer of two core
electrons to one virtual orbital and to the active space (from one
core electron and one active space electron to two virtual orbitals),
the second involving the passage of only one electron to (from) the
active space; lastly, the case k ¼ þ2 (�2) generates only one type of
space with two electrons passing from the core to the active space
(from the active to the virtual space). The different variants of
NEVPT2 are defined according to the number of perturbers that
are chosen from the SðkÞl spaces. In the ‘‘strongly contracted’’
approach only one function is chosen, by projecting the action of
the electronic Hamiltonian to the reference function onto the
SðkÞl space: WðkÞl ¼ PSðkÞl

HWð0Þm , whereas in the ‘‘partially contracted’’

approach the WðkÞl;l perturbers belong to the subspace �SðkÞl of SðkÞl
generated by the double-excitation operators which map Wð0Þm onto
SðkÞl . The energies of the perturbers are evaluated through the use of
a model Hamiltonian, HD, by the following prescription:

1. For the strongly contracted approach

EðkÞl ¼
WðkÞl HD

�
�

�
�WðkÞl

D E

WðkÞl jW
ðkÞ
l

D E :

2. For the partially contracted variant the perturbers and their
energies are provided by the diagonalization of the HD operator in
the �SðkÞl subspaces:

P�SðkÞl
HDP�SðkÞl

WðkÞl;l ¼ EðkÞl;lWðkÞl;l :

From the computational point of view, a particularly convenient
choice of the model Hamiltonian is provided by Dyall’s operator [8],

HD ¼ Hi þ Hv ; ð1Þ

Hi ¼
Xcore

i

�iEii þ
Xvirt

r

�rErr þ C ; ð2Þ

Hv ¼
Xact

ab

heffab Eab þ
1

2

Xact

abcd

abjcdh iðEacEbd � dbcEadÞ ; ð3Þ

where �i and �r are suitable orbital energies [9],
Exy ¼ aþxaaya þ aþxbayb is the spin–traced excitation operator [10], heffab
is a modified one–electron matrix taking into account the interac-
tion with the core electrons, heffab ¼ hab þ

Pcore
j ð2hajjbji � hajjjbiÞ,

and C is a constant ensuring the equivalence of HD with H within
the CAS space.

The form of the operator HD in Eqs. (1),(2) and (3) only ensures
that the resulting first-order perturbation correction to the wave
function is invariant under unitary transformations of orbitals
belonging to the active space. It is an easy task to extend the HD

definition so that invariance is guaranteed under unitary transfor-
mations within each of the three orbital classes (core, active, vir-
tual) by modifying the inactive one–electron component, Hi, into
the following:

Hi ¼
Xcore

i;j

fijEij þ
Xvirt

r;s

frsErs þ C ; ð4Þ

with

fij ¼ � aiW
ð0Þ
m Hj jajW

ð0Þ
m

D E

þ dijEð0Þm ð5Þ

and

frs ¼ aþr Wð0Þm Hj jaþs Wð0Þm

D E

� drsEð0Þm : ð6Þ

Diagonalization of the two f matrices leads then to the adoption of
so-called canonical core and virtual orbitals, a practice that we shall
tacitly assume in the calculations reported in the next sections.

As shown in Ref. [7], all the relevant quantities which are nec-
essary for the second-order correction to the energy, i.e. the inter-
action of the reference Wð0Þm function with the perturbers and the
energy denominators, can be easily calculated with the help of aux-
iliary quantities which need the knowledge of the zero-order density
matrices of particle rank not higher than 4, with indices only span-
ning the active orbital space. In the case of the partially contracted
approach, the use of Dyall’s Hamiltonian is particularly beneficial

because each of the eight typologies of �SðkÞl subspaces only necessi-
tates one diagonalization which is then valid for all the various �SðkÞl
instances. Thus the partially contracted approach, albeit involving
many more perturber functions than the strongly contracted case,
only needs a small computational overhead when compared with the
strongly contracted case. The two forms of NEVPT2, though, show
very similar results in the second–order correction to the energy, as
shown in Ref. [7], demonstrating that the strongly contracted ap-
proach is built on an effective averaging process.

A final remark concerns the issue of the occurrence of possible
small denominators (intruder states) in the perturbation summa-
tion: the most critical case can present itself in the Sð�1Þr spaces,
which involve the passage of one electron from the active space to a
virtual orbital (r), accompanied by an excitation within the active
space. In such a case the energy denominators can be expressed as
the difference between the energy of a virtual orbital (�r) and that
associated with a ionization potential in the valence shell. If the
virtual orbital is very diffuse, as happens when introducing Ryd-
berg orbitals in the basis set, �r is close to zero and the energy
denominator reduces to the valence ionization, which is anyway
never zero. So NEVPT2 should be applicable to the study of va-
lence excited states, the energies of which are well separated from
the first ionization potential.

3 Applications

3.1 Formaldehyde

The vertical spectrum of the formaldehyde molecule
was computed at the ground-state experimental geo-
metry [11] [R(CO)=1.208 Å, R(CH)=1.116 Å and
h(HCH)=116.5�]. The molecule belongs to the C2v point
group symmetry and lies in the yz-plane with the C and
O atoms on the z-axis. The atomic natural orbital
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(ANO) basis set of Widmark et al. [12] was used with
two different contraction schemes: the smaller, indicated
by ANO(S), is C,O [4s3p1d]/H[2s1p] and the larger,
ANO(L), is C,O [6s5p3d2f]/H[4s3p2d]. These valence
basis sets were augmented with diffuse functions in order
to properly describe the diffuse orbitals involved in the
Rydberg states. These basis functions are obtained by
contraction of a set of 8s8p8d Gaussian primitives whose
exponents were generated using the procedure proposed
by Kaufmann et al. [13]. The contraction coefficients
were computed following the procedure developed by
Roos et al. [14] and two contraction schemes were
considered: [1s1p1d], Ryd(S), and [3s3p3d], Ryd(L). In
order to directly compare our results with the CASPT2
and the size-consistent self-consistent CI calculations of
Merchán and Roos [15] and of Pitarch-Ruiz et al. [16],
respectively, we used in the calculations the combina-
tions ANO(S)-Ryd(S) and ANO(L)-Ryd(L).

The molecular orbitals were obtained from average
CAS-SCF calculations which involve the lowest states of
a given symmetry. The active spaces, together with the
number and the nature of the states considered in the
averaging procedure are reported in Table 1 and are
taken from Ref. [15]. The number of orbitals for each
irreducible representation was chosen by the authors so
that all the states of interest could be correctly described.
In some cases the active space was enlarged in order to
minimize the effect of the intruder-states problem in
the CASPT2 calculations. Given that our perturbation
treatment is not affected by the intruder-states problem,
in our calculations a reduction of the active space should
be possible but the comparison of our results with those
of Refs. [15, 16] would be in this case less clear.

The energies of the states were computed in a state-
specific multireference perturbation scheme. The zero-
order description of each state was obtained from a
CAS-CI calculation using the average CAS–SCF active
orbitals. The inactive orbitals were transformed in order
to diagonalize the state-specific Fock matrices defined in
Eqs. (5) and (6). A second-order correction to the energy
was computed using the strongly contracted (SC) and
partially contracted (PC) variants of the NEVPT meth-
od. All orbitals and electrons were included in the per-
turbation treatment. The excitation energies were
computed with respect to the same ground-state energy,
which was evaluated as the second-order correction to
the energy with the reference energy and wave function
obtained from a state-specific CAS–SCF calculation
with four electrons in two b1 (p + p�) and two b2 (ny +
virtual) orbitals. This approach for the calculation of the

excitation energies differs from that used in the CASPT2
[15] calculation, where a different ground-state energy
was used for each irreducible representation. The verti-
cal excitation energies obtained in our calculations are
reported in Table 2 for the Rydberg states and in
Table 3 for the valence states, together with the results
of previous theoretical calculations and with some
experimental results.

InTables 4 and 5we show the comparison between our
results and those of Pitarch-Ruiz et al. [16], which can be
considered a good reference since they involve the whole
single plus double excitations space on top of a CAS at a
variational level with a size-consistency correction. We
remark that the mean absolute error of our results is al-
ways small, with the worst case being represented by the
SC-NEVPT in the ANO(L) + Ryd(L) basis (0.15 eV).
The small errors appearing in Tables 4 and 5 bear out the
reliability of NEVPT2, which can yield results of good
accuracy, comparable with much more refined calcula-
tions, but at a much lesser computational cost.

For the case of the smaller basis [ANO(S) + Ryd(S)]
the CASPT2 results are also available [15] and are
reported in Table 4 for comparison. It can be remarked
that NEVPT2 and CASPT2 appear to be of the same
quality, with the former showing in all cases a small
squared norm of the wave function perturbation cor-
rection (see Tables 2, 3), thus getting over the intruder
state problem.

As to the comparison with the experimental data,
beyond a satisfactory general agreement with our theo-
retical results we can make the following observations:

– In accordance with most theoretical calculations, our
vertical 2 1A1 and 1 1B2 Rydberg transitions appear in
inverted order with respect to experimental adiabatic
transitions [22]: a more stringent comparison would
require the calculation of adiabatic transition with
due allowance for the zero-point-energy correction.

– The calculation of the 1A1 Rydberg states with the
larger basis set introduces one more Rydberg state
(ny ! p�) below the valence p! p�; such a state was
ignored in the average CAS–SCF since we were
interested in transitions involving Rydberg orbitals
not exceeding the quantum number n ¼ 3.

– Mixing between Rydberg and valence character may
occur in both the 1A1 and the 1B1 transitions [15, 18].
For a correct treatment of such states a quasi–
degenerate treatment would be required [27, 28]. We
expect to introduce such corrections in NEVPT2 in
the near future.

Table 1. Active spaces and number of states used in the average complete-active-space self-consistent-field (CAS-SCF) calculations for the
formaldehyde molecule (in all cases four active electrons)

Number of MOsa Symmetry and nature of states Number of statesb

(0340) 1A1 (GS;ny!3py ,3dyz;p!p�) 4
(2200) 1B1 (r!p�) 1
(0211) 1B1 (ny!3dxy) 1
(4210) 1B2 (ny!3s,3pz,3dx2�y2 ,3dz2 ) 4
(0410) 1A2 (ny!p�, 3px, 3dxz) 3

a Number of molecular orbitals in the active space for the four irreducible representations (a1,b1,b2,a2)
b number of states used in the averaging procedure
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Table 2. Vertical excitation energies (eV) for the Rydberg states of
the formaldehyde molecule. The numbers in parentheses are the
squared norms of the first-order corrections to the wave function.
The squared norm for the ground state is 0.075 (n-electron valence
state perturbation theory NEVPT, strongly contracted SC), 0.076
(NEVPT, partially contracted PC), 0.091 (NEVPT SC) and 0.097

(NEVPT PC): the former two values were obtained with the atomic
natural orbital (ANO) basis with contraction [4s3p1d/2s1p] +
1s1p1d, ANO(S)+Ryd(S), while the latter two values were ob-
tained with the ANO basis set with contraction [6s5p3d2f/4s3p2d]
+ 3s3p3d, ANO(L)+Ryd(L)

Table 3. Vertical excitation
energies (eV) for the valence
states of the formaldehyde
molecule. The numbers in par-
entheses are the squared norms
of the first-order corrections to
the wave function. The squared
norm for the ground state is
0.075 (NEVPT SC), 0.076
(NEVPT PC), 0.091 (NEVPT
SC) and 0.097 (NEVPT PC):
the former two values were
obtained with the ANO(S)+
Ryd(S) basis (see text),
while the latter two values were
obtained with the ANO(L)+
Ryd(L) basis (see text)

a This work
b ANO(S)+Ryd(S) basis (see
text)
c ANO(L)+Ryd(L) basis (see
text)

Method 4 A1 1 A2 1 B1

(p!p�) (ny ! p�) (r!p�)

CAS–SCFa;b 10.59 5.28 9.89
CAS–SCFa;c 10.47 5.27 9.82
SC-NEVPTa;b 10.09 4.04 9.53

(0.087) (0.105) (0.081)
SC-NEVPTa;c 9.97 3.93 9.37

(0.095) (0.113) (0.091)
PC-NEVPTa;b 9.94 4.03 9.45

(0.100) (0.109) (0.088)
PC-NEVPTa;c 9.80 3.91 9.28

(0.112) (0.118) (0.097)
CASPT2 [15] 9.77 3.91 9.09
MC/BMP [17] 10.37 3.83 13.69
(SC)2 CAS+SDb [16] 9.89 4.15 9.35
(SC)2 MR+SDc [16] 9.74 4.04 9.33
CCR(3)b [16] 9.80 4.01 9.29
CCR(3)c [16] 9.64 3.97 9.25
MRD-CI [18] 9.60 4.05 9.35
MR-CISD + Q [19] 9.80 4.07 9.40
MR-AQCC [19] 9.84 4.04 9.37
EOM-CCSD [20] 9.47 3.98 9.33
EOM-CCSD [21] 9.37 4.04 9.43
Exp [22] 4.07
Exp [26] 3.79

Method 2 A1 3 A1 1 B2 2 B2 3 B2 4 B2 2 A2 3 A2 2 B1

(3py) (3dyz) (3s) (3pz) (3dx2�y2 ) (3dz2) (3px) (3dxz) (3dxy)

CAS–SCFa;b 8.07 9.18 7.37 8.15 9.08 9.21 8.84 9.78 9.16
CAS–SCFa;c 8.04 9.12 7.29 8.08 8.99 9.12 8.81 9.72 9.12
SC-NEVPTa;b 8.27 9.42 7.28 8.11 9.13 9.30 8.33 9.34 9.26

(0.077) (0.076) (0.092) (0.090) (0.083) (0.082) (0.080) (0.079) (0.079)
SC-NEVPTa;c 8.39 9.56 7.32 8.16 9.17 9.37 8.46 9.48 9.39

(0.084) (0.083) (0.090) (0.090) (0.087) (0.086) (0.099) (0.097) (0.086)
PC-NEVPTa;b 8.20 9.34 7.28 8.12 9.14 9.31 8.33 9.34 9.27

(0.084) (0.084) (0.095) (0.093) (0.085) (0.084) (0.082) (0.081) (0.081)
PC-NEVPTa;c 8.31 9.49 7.33 8.17 9.17 9.38 8.45 9.48 9.39

(0.092) (0.090) (0.092) (0.092) (0.089) (0.088) (0.103) (0.100) (0.087)
CASPT2 [15] 8.12 9.24 7.30 8.09 9.13 9.31 8.32 9.31 9.23
MC/BMP [17] 7.95 9.11 6.90 7.77 8.95 9.11 8.46 8.82 9.06
(SC)2 CAS+SDb [16] 8.14 9.26 7.17 7.96 9.00 9.19 8.30 9.28 9.12
(SC)2 MR+SDc [16] 8.27 9.31 7.12 7.95 8.96 9.18 8.36 9.34 9.36
CCR(3)b [16] 8.01 9.16 7.11 7.91 8.99 9.21 8.25 9.26 9.12
CCR(3)c [16] 8.14 9.27 7.16 7.99 9.04 9.27 8.38 9.40 9.25
MRD-CI [18] 8.10 9.25 7.15 8.05 9.05 9.25 8.32 9.34 9.32
MR-CISD + Q [19] 8.13 9.28 7.27 8.10 9.15 9.30 8.34 9.36 9.26
MR-AQCC [19] 8.24 9.38 7.21 8.03 9.09 9.24 8.46 9.49 9.37
EOM-CCSD [20] 7.99 10.16 6.99 7.93 9.25 9.98 8.45 10.67 9.84
EOM-CCSD [21] 7.98 9.13 7.04 7.88 8.94 9.12 8.21 9.29 10.89
Exp [22] 7.97 7.11 8.14 8.88 8.37
Exp [23] 9.22
Exp [24,25] 7.09

a This work
b ANO basis set with contraction [4s3p1d/2s1p] + 1s1p1d, ANO(S)+Ryd(S)
c ANO basis set with contraction [6s5p3d2f/4s3p2d] + 3s3p3d, ANO(L)+Ryd(L)
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3.2 Acetone

The computational strategy used for acetone closely
follows the one applied to formaldehyde. The vertical
spectrum was computed at the ground-state experimen-
tal geometry [11]. The molecule belongs to the C2v point
group symmetry with the OCCC skeleton in the yz-plane
(C and O atoms on the z-axis and with an orientation of
the CH3 groups that place the two H atoms lying in the
yz-plane as far as possible). For acetone, we only
consider the C,O[4s3p1d]/H[2s1p] contraction of the
ANO basis set of Widmark et al. [12].

The Rydberg states are described using a set of
8s8p8d diffuse functions [13] contracted to [1s1p1d] fol-
lowing the procedure described in Ref. [14].

As in formaldehyde, average CAS-SCF calculations
provide the molecular orbitals: the active spaces and
the number and the nature of the states considered in
the averaging procedure are reported in Table 6 and
are taken from Ref. [29]. With respect to formalde-
hyde, the active space was modified by adding the two
CO r and r� orbitals and the two CO r electrons,

except for the A1 symmetry, where three virtual orbi-
tals (one of b1 and two of b2 symmetry) were removed.
In Ref. [29] the CO r and r� orbitals were added to
the active space in order to correctly describe the
adiabatic electronic transitions for the valence states, in
which an elongation of the CO bond is observed owing
to the promotion of an electron to the p� orbital.

Given that we present here only results for the ver-
tical transitions, also in the case of acetone a reduction
of the active space used in Ref. [29] would have been
possible, but we chose to maintain the same active space
in order to have a meaningful comparison with the
CASPT2 data.

The energies of the states were computed following
the strategy outlined for formaldehyde and the tran-
sition energies are reported in Table 7 for the Rydberg
states and in Table 8 for the valence states, together
with the results of other theoretical calculations and
with some experimental results.

We note that our PC-NEVPT2 results compare very
well with the CASPT2 ones. We also remark that in
two of the valence transitions (4 1A1, p! p� and 1
1A2, ny ! p�) the difference between SC and PC
NEVPT appears to be unusually large (0.59 and 0.20
eV, respectively); we think that this is justification for
the zero-order wave function to necessitate significant
improvement.

4 Concluding remarks

Among the formal requirements satisfied by NEVPT
(Sect. 2), the absence of intruder states appears partic-
ularly interesting for the application to the calculation of
electronically excited states. The results shown in the
preceding section for the vertical transitions of formal-
dehyde and acetone are of good quality and exhibit good
agreement with the best calculations performed so far as
well as with the existing experimental data. Our
calculations were carried out starting from rather
modestly sized CAS–SCF wave functions. The compu-
tational overhead involved in the two forms of NEVPT
(SC and PC) amounts to only a small fraction of the
CAS–SCF calculation for such small active orbital
spaces and this favorable situation is not expected to
drastically change when passing to larger molecules,

Table 4. Energy differences (eV) between the perturbation and the
size-consistent [(SC)2] CAS+single and double excitations (SD)
results of Ref. [16]

PC-NEVPTa SC-NEVPTa CASPT2b

2 A1 0.06 0.13 )0.02
3 A1 0.08 0.16 )0.02
4 A1 0.05 0.20 )0.12
1 B2 0.11 0.11 0.13
2 B2 0.16 0.15 0.13
3 B2 0.14 0.13 0.13
4 B2 0.12 0.11 0.12
1 A2 )0.12 )0.11 )0.24
2 A2 0.03 0.03 0.02
3 A2 0.06 0.06 0.03
1 B1 0.10 0.18 -0.26
2 B1 0.15 0.14 0.11
Mean absolute
error

0.10 0.13 0.11

a This work
b Ref. [15]

Table 5. Energy differences (eV) between the perturbation and the
(SC)2 multireference+SD results of Ref. [16]

PC-NEVPTa SC-NEVPTa

2 A1 0.04 0.12
3 A1 0.18 0.25
4 A1 0.06 0.23
1 B2 0.21 0.20
2 B2 0.22 0.21
3 B2 0.21 0.21
4 B2 0.20 0.19
1 A2 )0.13 )0.11
2 A2 0.09 0.10
3 A2 0.14 0.14
1 B1 )0.05 0.04
2 B1 0.03 0.03
Mean absolute
error

0.13 0.15

a This work

Table 6. Active spaces and number of states used in the average
CAS-SCF calculations for the acetone molecule (always six active
electrons, except in the case of the 1B1 (r! p�), which is computed
with four active electrons

Number
of MOsa

Symmetry and
nature of states

Number
of statesb

(2230) 1A1 (GS;ny!3py ,3dyz;p!p�) 4
(2200) 1B1 (r!p�) 1
(2211) 1B1 (ny!3dxy) 1
(6210) 1B2 (ny!3s, 3pz, 3dx2�y2 , 3dz2 ) 4
(2410) 1A2 (ny!p�,3px,3dxz) 3

a Number of molecular orbitals in the active space for the four
irreducible representations (a1,b1,b2,a2)
b Number of states used in the averaging procedure
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provided that the active space can be kept within
manageable dimensions (10 or less, say).

No evidence of divergences or misbehavior in the
perturbation summation was found in the calculation of
the Rydberg states, which are particularly prone to
exhibiting the appearance of intruder states. We are
confident that NEVPT2 can be successfully adopted as a
standard tool for the exploration of electronically ex-
cited states of medium–sized molecules.
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Table 8. Vertical excitation energies (eV) for the valence states of
the acetone molecule. The numbers in parentheses are the squared
norms of the first-order corrections to the wave function. The
squared norm for the ground state is 0.164 (NEV-PT SC) and 0.167
(NEV-PT PC)

Method 4 A1 1 A2 1 B1

(p!p�) (ny ! p�) (r!p�)

CAS–SCFa 11.60 5.57 10.38
SC-NEVPTa 9.60 4.42 9.29

(0.204) (0.189) (0.182)
PC-NEVPTa 9.01 4.22 9.23

(0.293) (0.207) (0.190)
CASPT2 [29] 9.16 4.18 9.10
EOM-CC [20] 9.15 4.48 9.30
EOM-CC [21] 8.52 4.47 8.87
Exp [26] 4.38
Exp [22] 4.43

a This work

Table 7. Vertical excitation energies (eV) for the Rydberg states of the acetone molecule. The numbers in parentheses are the squared norms
of the first-order corrections to the wave function. The squared norm for the ground state is 0.164 (NEV-PT SC) and 0.167 (NEV-PT PC)

Method 2 A1 3 A1 1 B2 2 B2 3 B2 4 B2 2 A2 3 A2 2 B1

(3py) (3dyz) (3s) (3pz) (3dx2�y2) (3dz2) (3px) (3dxz) (3dxy)

CAS–SCFa 7.91 8.46 6.02 6.75 7.30 7.39 7.29 7.99 7.38
SC-NEVPTa 7.40 8.03 6.75 7.67 8.25 8.37 7.48 8.24 8.36

(0.182) (0.179) (0.159) (0.155) (0.154) (0.153) (0.168) (0.166) (0.154)
PC-NEVPTa 7.27 7.91 6.71 7.64 8.22 8.34 7.39 8.17 8.35

(0.195) (0.192) (0.166) (0.161) (0.160) (0.158) (0.177) (0.175) (0.158)
CASPT2 [29] 7.26 7.91 6.58 7.48 8.04 8.18 7.34 8.09 8.20
EOM-CCSD [20] 7.45 8.23 6.39 7.51 7.95 8.48 7.41 8.44 8.43
EOM-CCSD [21] 7.41 8.02 6.42 7.39 7.82 8.10 7.31 8.04 8.11
Exp [29] 7.8 8.09 8.17
Exp [30] 6.35
Exp [22] 6.36 7.45
Exp [31] 7.41 7.45 7.36

a This work
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